19 research outputs found

    The use of antibiotic-loaded bone cement and systemic antibiotic prophylactic use in 2,971,357 primary total knee arthroplasties from 2010 to 2020: an international register-based observational study among countries in Africa, Europe, North America, and Oceania.

    Get PDF
    BACKGROUND AND PURPOSE Antibiotic-loaded bone cement (ALBC) and systemic antibiotic prophylaxis (SAP) have been used to reduce periprosthetic joint infection (PJI) rates. We investigated the use of ALBC and SAP in primary total knee arthroplasty (TKA). PATIENTS AND METHODS This observational study is based on 2,971,357 primary TKAs reported in 2010-2020 to national/regional joint arthroplasty registries in Australia, Denmark, Finland, Germany, Italy, the Netherlands, New Zealand, Norway, Romania, South Africa, Sweden, Switzerland, the UK, and the USA. Aggregate-level data on trends and types of bone cement, antibiotic agents, and doses and duration of SAP used was extracted from participating registries. RESULTS ALBC was used in 77% of the TKAs with variation ranging from 100% in Norway to 31% in the USA. Palacos R+G was the most common (62%) ALBC type used. The primary antibiotic used in ALBC was gentamicin (94%). Use of ALBC in combination with SAP was common practice (77%). Cefazolin was the most common (32%) SAP agent. The doses and duration of SAP used varied from one single preoperative dosage as standard practice in Bolzano, Italy (98%) to 1-day 4 doses in Norway (83% of the 40,709 TKAs reported to the Norwegian arthroplasty register). CONCLUSION The proportion of ALBC usage in primary TKA varies internationally, with gentamicin being the most common antibiotic. ALBC in combination with SAP was common practice, with cefazolin the most common SAP agent. The type of ALBC and type, dose, and duration of SAP varied among participating countries

    Predicted aerodynamic damping of slender single beam structures in across-wind vibrations

    No full text
    The paper presents a generalization of the conventional analytical approach where the quasi-steady theory is utilised to evaluate the across-wind aerodynamic damping of slender single beam structures. This generalized theory considers the variation of structural and aerodynamic parameters along the structural height, together with the nature of the vertical wind profile and mode shapes. Closed-form solutions for typical uniform and tapered tall buildings are given. A numerical application on a prototype tall building shows that the conventional method may be oversimplified, which results in incorrect predictions of the aerodynamic damping
    corecore